
RHIC Run-7 Au-Au Operation

RHIC Retreat 2006

RHIC Retreat, Port Jefferson 10 July, 2006

Run 7 Draft Schedule

- RHIC cold beginning of November
- assume 34 cryo-weeks
- assume two mode running: HI + other (d-Au, pp, ...)
- HI could include low energy run

RHIC Run organization

Run Coordinator HI
Angelika Drees

Run Coordinator PP/other
Christoph Montag

Scheduling physicist
Kip Gardner

- RHIC shift leaders: Bai, (Drees), Luo, (Montag), Ptitsyn, Kewisch, Zhang, Beebee-Wang, McKay
- Back-up RHIC shift leaders: Fischer, Montag/Drees, Trbojevic, Pilat, Satogata
- Operations + RHIC specialist (Marr) \rightarrow larger role during set-up, ramp-up, beamex
- same 'old question': should operations be involved more and AP less? (yes) Was the role of operations improved last run? (yes) Did we do better? (not really) Were we more efficient? (reached plateau)

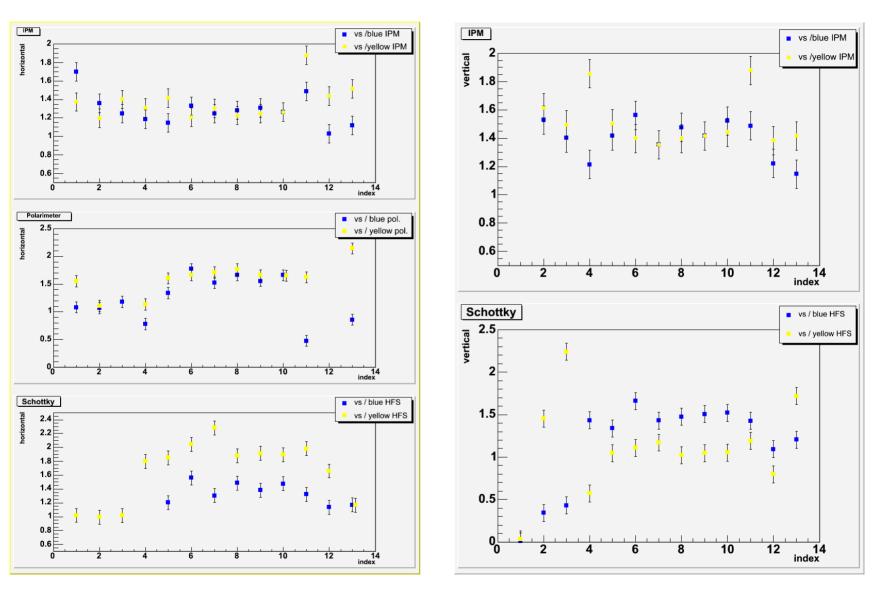
Weekly schedule:

Monday Scheduling meeting

Monday RHIC Weekly meeting

Tuesday Time Meeting & Machine-experiments meeting

operations analysis meeting (new)

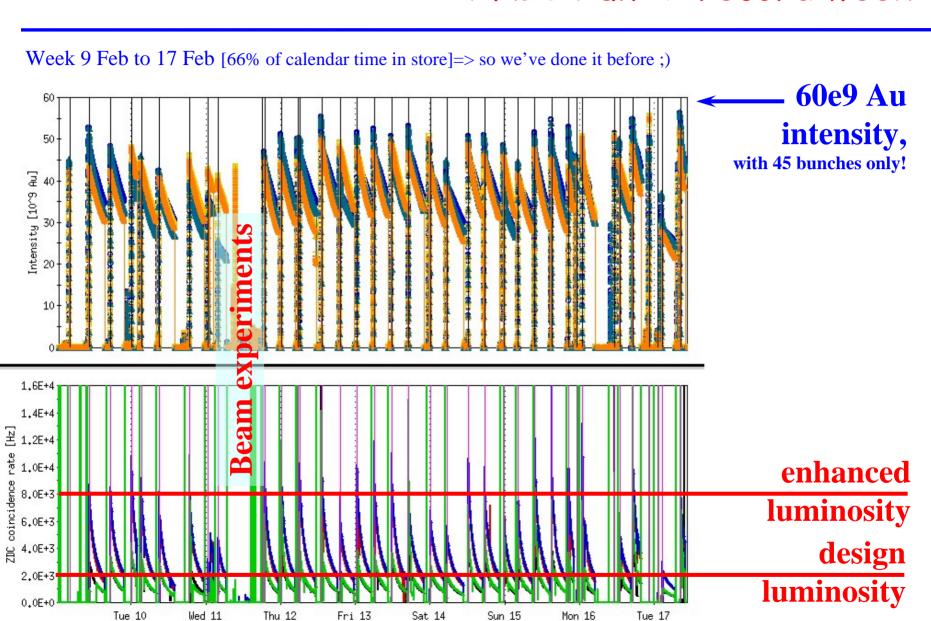

? Beam Experiments

? maintenance day (every 3 weeks)

daily/varying RHIC run meeting

(will have to change time slightly: 9:00 am?)

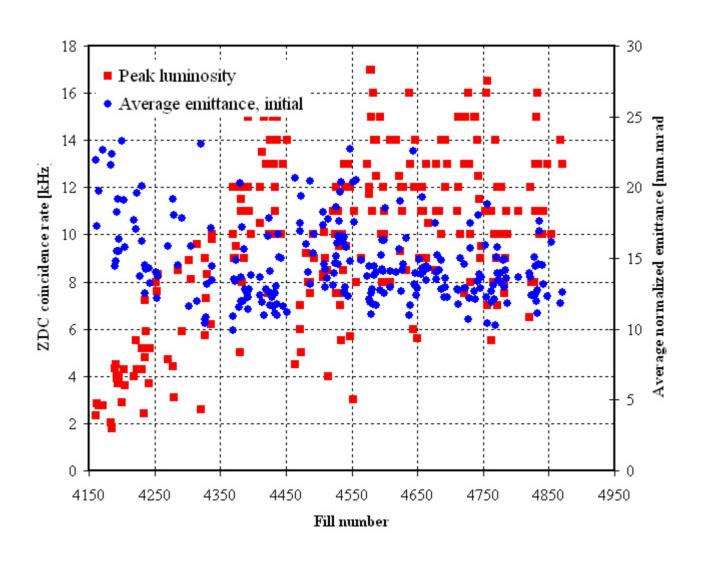
Operations Analysis Example: compare Vernier Scans with IPM, Schottky, Polarimeter

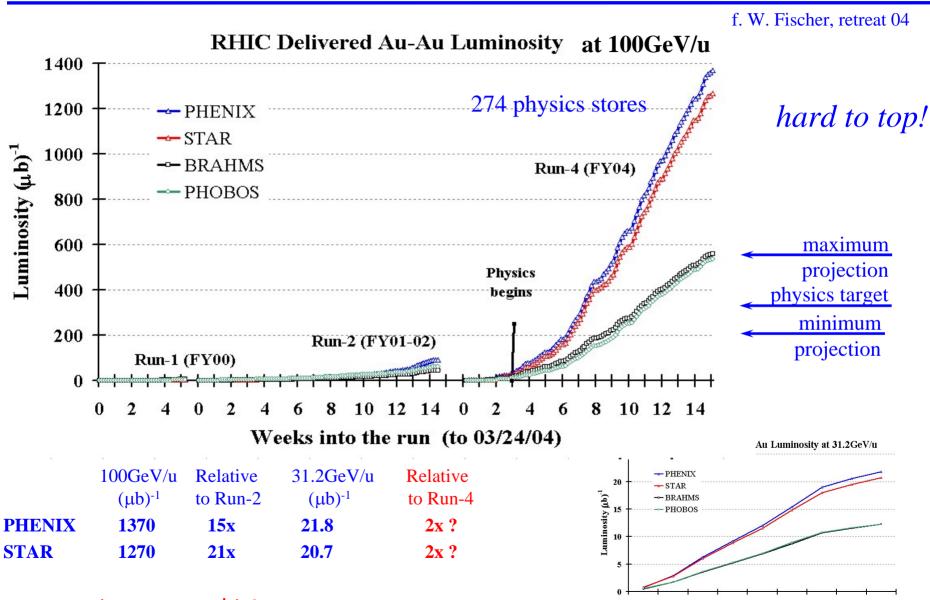

Horizontal Vertical

RHIC Run-4 - Au-Au operation

Major achievements Au-Au: from W.Fischer, Retreat 04

- Start-up/ramp-up in 4 weeks (1 week less than planned)
- Consistent high bunch intensity from injector (≥109Au)
- Time in store increased to 53% (65% at 31.2GeV/u)
 - not yet exceeded!
- Reliable, almost complete rebucketing into storage rf
- Steering and collimator setting time reduced to 10min
- Best 7 days delivered 179 µb⁻¹ to Phenix (2x Run-2)
- Set-up for 31.2GeV/u run in less than 2 days


RHIC Run-4 record week


Time

f. W. Fischer, retreat 04

Run4 Emittances and Luminosities (Initial)

Achieved: RHIC Run-4 - Au-Au luminosity evolution

Days into the run (to 04/02/04)

^{-&}gt; can we improve on this?

Machine Set-up and Ramp-up

- set-up w. beam during cool-down (2 weeks)
 - injection into one ring as soon as temperatures allow circulation beam
 - evening and owl-shifts once one ring is ready (=> daily meetings begin)
 - AGS-RHIC synchro ...
- start-up mode (2 weeks, depends on challenges, can be improved)
 - 3 shifts/day, daily meetings
 - injection development
 - ramp development (low intensity)
 - store development (low intensity, 1st collisions, coll. set-up, ...)
- ramp-up mode (1 week)
 - 1-2 shifts per day, collisions over night, daily meetings
 - increase intensity
 - collimation, collision optimization
- physics (? weeks)
 - increase number of bunches
 - occasional beam development during the days, reduced meetings

Run-7 upgrades/improvements

For FY2006	For FY2007	For FY2008	
	RHIC injectors		
LINAC cooling tower	AGS MMPS transformer	AGS low level rf upgrade	
	AGS ion pump controllers		
	Booster/AGS bunch merge =>	Brennan, Gardner	
RHIC	C luminosity, polarization and bac	ckground	
Shielding STAR	Sector 3 triplet 24h movement	Low level rf upgrade	
Stochastic cooling test	Stochastic cooling	Transverse damper	
NEG pipes (150 m)	NEG pipes (100 m)	·	
CNI polarimeter vacuum and targets	CNI polarimeter upgrade	yellow only => Blaskiewicz talk	
10 Hz IR orbit feedback	Rf storage windows		
Vacuum pumps in arcs	Nonlinear chromaticity correctio	n	
Complete vertical alignment			
	RHIC time in store		
QLI reduction	QLI reduction		
BPM system upgrade	BPM system upgrade	112	
Orbit correction	Orbit correction	work in progress	
Injection set-up	Injection set-up		
IR PS reliability	Service building environment	Service building environment	
Gradient error correction	Gradient error correction		
Decoupling on ramp			
Beginning-of-store automation			

Run-7: ramp, set-up and efficiency

More automation:

- Steering → small changes compared to run4
- Collimation (small SW changes compared to run4)
- Ramp & store orbit correction → improved
 (time saving: machine became reproducible over whole run, can eliminate luminosity optimization, also saves time when exp. magnet configuration is changed)
- Gap Cleaning: continuous during the store (no change), good up to 1.4 109 ions/bunch
- Automate/Sequence all of the above
- ongoing operations analysis meetings throughout the run
- Configuration database
- Instrumentation: BBQ, tune feedback, BTFs, decoupling on the ramp

Expected Luminosity for HI

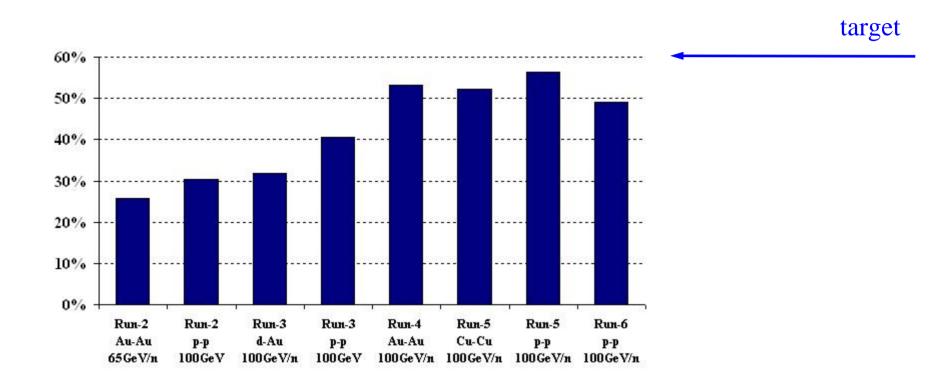
Fiscal year		2002A	2004A	2006E	2007E	2008E
No of bunches		55	45	78	90	111
Ions/bunch, initial	10°	0.6	1.1	1.1	1.1	1.1
Average beam current/ring	mA	33	49	85	98	121
β*	m	1	1	0.9	0.9	0.9
Peak luminosity	$10^{26} \text{ cm}^{-2} \text{s}^{-1}$	5	15	28	32	40
Average store luminosity	10 ²⁶ cm ⁻² s ⁻¹	1.5	4.0	7.0	8.1	9.9
Time in store	%	25	53	56	58	60
Maximum luminosity/week	μb ⁻¹	25	160	236	282	360
Minimum luminosity/week	μb ⁻¹			160	160	160
Maximum integrated luminosity	μb ⁻¹	89	1370	2480	2970	3780
Minimum integrated luminosity	μb ⁻¹			1680	1680	1680

- No. of bunches: likely to increase gradually during the run, maybe up to 111
- ions/bunch: 1.1 109 achieved => do we need booster bunch merge to increase this? Weeks of development time in booster and AGS necessary before RHIC starts. (=> talk M. Brennan)
 - transition crossing => talk C. Montag
 - vacuum/pressure rise => talk D. Hseuh
- β^* : squeeze to smaller values than 1.1? (=> background, collimators ...)
- time in store: how can we reach 60%? Automation, QLI reduction, PS reliability, weather ...
- bunched intensity, vertex: IBS suppression lattice & stochastic cooling
 - IBS suppression: 2-3 days development time: need to decide soon if we want to try (=> talk of V. Litvinenko)
 - stochastic cooling: yellow only (blue in testing), will not yet reduce vertex distribution significantly but increase yellow bunched lifetime, 10% L increase?

Run 7 Strategies

As much routine as possible (QGP factory)

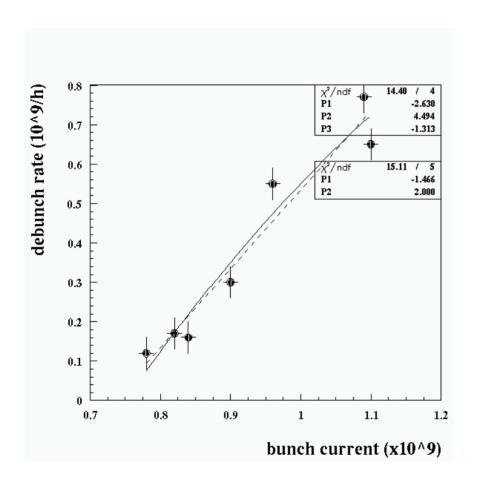
- avoid major and costly changes/upgrades:
 - no booster bunch merge
 - avoid risk of man-power shortage (cooling)
 - no IBS suppression lattice
- only small changes at the time
 - stochastic cooling (we will have anyway)
 - some improvement on β^* (0.8 m?)
 - backgrounds?
 - slowly increase no. of bunches (limit < 111?)
 - automation (software), reduce time between stores
 - reduced set-up time due to tunefeedback and decoupling on the ramp
 - touch machine as little as possible
 - go into production mode as early as possible
 - focus on reliability


as aggressive as possible

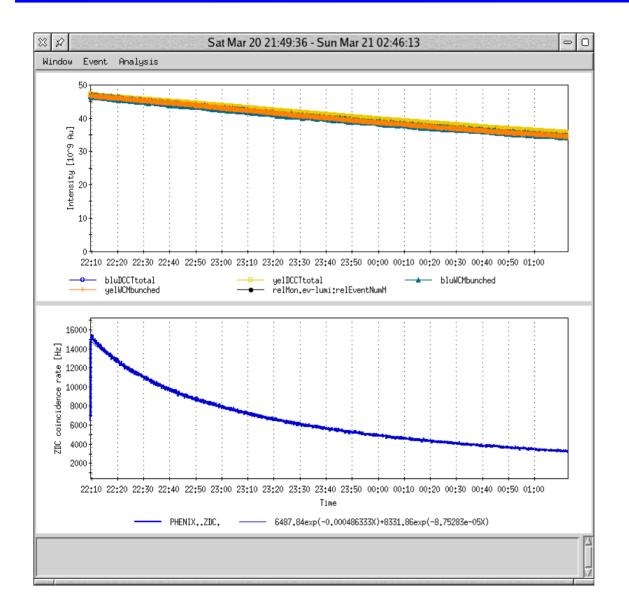
- get major upgrades out of the way:
 - booster bunch merge (requires HW changes and development time > 2 weeks)
 - develop alternative to debunchrebunch in the AGS (untested!)
 - gap cleaning?
 - polarization development?
 - emittance?
 - transition crossing/pressure
 - focus on intensity (vs. cooling)
- develop IBS suppression lattice
 - start-up with a ramp that's still undeveloped
 - unknown outcome (lost time if doesn't work)
- production mode will start later, time between stores could be longer
 - machine might be 'touchier' (unknown lattice) => more lost ramps, less reliability
 - cooling (low mom. spread) could cause yellow to be more delicate => chromaticity control in yellow more important (also applies to routine strategy)

Physics running

- lattice and working point: tbd (IBS suppression?, beta-squeeze?)
 - IBS suppression lattice has the potential of increasing luminosity by ~25% (=> Vladimir's talk)
 - lattice will have $\beta^* = 0.85, 0.85, 5, 5, 5, 5$ (IBSsup or not)
- Start of physics running
 - mutual interest in early start of regular stores/operations guidelines for start of physics: adequate collisions, rebucketing, collimation in place mutual decision to define physics start-up
- <u>Development</u>: day shifts, 8am-4pm, after agreement or approval by experiments/scheduling physicist
- Beam experiments: 12 hours/week (s. Kevin's comments)
- <u>accesses:</u> 3 week maintenance schedule preferred, 'cluster' with beam experiments, any other access: scheduling physicist (accumulate access requests, review ...)
- End of store procedure fixed length stores end of store determined by MCR→countdown for experiments (automated in BERT?), length determined by luminosity lifetime and refill time.


RHIC time in store

task force challenge: reach 60% of calendar time in store! (s. W.Fischer's talk this morning)


=> too many new concepts tend to spoil time in store

Reminder: Gap Cleaning Efficiency

- existing data cannot determine 1st or 2nd order
- extrapolation allows 1.4 10⁹ ions/bunch with current gap cleaner and debunching rate
 - no IBS suppression assumed
 - no cooling
- assume a store length of 4 hours before limit of debunched beam is reached
- improve gap cleaner?
- IBS suppression lattice would help both rings, cooling only yellow
- 1.4 10⁹ ions/bunch can only be reached if injectors are changed

Luminosity Lifetime

need 2 exponentials to fit luminosity lifetime

two components:

fast: ~0.5 h

slow: ~ 2 h

improvements (cooling, higher intensity, IBS suppression, β *) will affect slow component more due to collimation, steering and exp. turn-on

Summary

- It basically comes down to the question to decide
 - "QGP factory" or aggressive approach
 - do a mix of both
- \blacksquare There is up to x2 increase possible already just from
 - beta squeeze
 - yellow cooling (chromaticity control more important!)
 - number of bunches increase 45=>? (vacuum upgrade)
 - start-up and ramp-up is more routine, new RampEditor, better model ...
 - reliability improvements, improved instrumentation (coupling on the ramp)
 - improved time at store (automation, reduce time between store ...)
- Additional improvement can come from:
 - bunch intensity (booster bunch merge)
 - unknown limits: transition, gap cleaning, instabilities, vacuum ...
 - IBS suppression lattice
 - "new" machine, additional set-up time, unknown reliability, stability and reproducibility
- don't change too many parameters at once
 - this will apply to any future run
 - explore some of the limits now rather than later
- recommend: do IBS suppression lattice OR bunch intensity increase this run